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Introduction 
Articular cartilage is a load bearing, friction-reducing tissue that covers, seals, and 

protects the bones of synovial joints. Cartilage is a biphasic matrix: the solid components 

of which is composed of type II collagen and associated proteoglycans. The liquid phase 

of the matrix is mainly water, mixed with solutes such as ions and growth factors. [10] 

Seeded within this matrix are chondrocytes, which regulate the remodeling and growth of 

this tissue. [5] The orientation of chondrocytes and the collagen matrix changes as a 

function of depth. Traditionally, the depth dependent architecture of cartilage is divided up 

into three zones: the superficial zone, the middle zone, and the deep zone.[4] The 

superficial zone, or the top 25% of the cartilage located closest to the joint cavity, features 

collagen and chondrocytes arranged in layers running parallel to the surface of the 

cartilage. The middle zone, the 50% lying below the superficial layer, features collagen 

and chondrocytes arranged in a random fashion. The deep zone, the final 25% that lies on 

top of the bone, features collagen and chondrocytes arrange in columnar structures. This 

change in orientation causes a decrease in diffusivity of many solutes as a function of 

cartilage depth.  

Osteoarthritis, or OA, is one of the most common disorders experienced by the 

human population. Hallmarks of OA include the degradation of cartilage, inflammation of 

the joint space, and increased susceptibility to injury. OA results in two major types of 

damage to the cartilage matrix, full tissue degradation in which collagen and proteoglycan 

content is decreased throughout the entire thickness of the cartilage, and focal defects in 

which a specific region of the cartilage is lost. 

 

Figure 1 Progression of Osteoarthritis 

Both of these injuries lead to increased permeability of the cartilage, allowing the 

inflammatory agents, and the other components of the synovial fluid to enter the cartilage 

matrix.[4] The degradation and wear of cartilage in particular causes increased levels of 

pain and limited mobility for those who suffer from OA. Currently, cell and artificial 

matrix based treatments are the clinical gold standard for treating the degradation of 

cartilage. Osteochondral allografting has also proven effective for the treatment of focal 

defects.[11]  
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Due to the avascular nature of cartilage and the complex architecture of the tissue, 

repair and regeneration occur at a very slow rate.[8] Essentially, all damage incurred by 

cartilage over the course of a lifetime is permanent. Current treatments for articular 

cartilage defects are most effective when utilized early in the degradation process.[7] The 

most effective, non-invasive way to diagnose articular cartilage degradation and the 

progression of OA in the clinic is to take a contrast agent aided MRI scan of the joint in 

concern. The most common contrast agent used to diagnose the progression of OA is the 

element gadolinium (Gd).[2] Gd is injected intravenously to the patient and diffuses 

through the tissues in the joint over the course of several hours prior to the scan. The 

magnetic properties of Gd allow it to reduce the relaxation time of tissues in its proximity, 

creating a larger local signal for the MRI scanner to detect.[12]  

      

            Figure 2 Normal MRI Scan                    Figure 2 MRI with Gadolinium Contrast Agent 

Due to the deterioration of the cartilage matrix caused by OA, the diffusion profile of Gd 

through cartilage will change in a healthy versus a diseased state. Thus, a mathematical 

model of the diffusion of the Gd through cartilage has potential to be clinically relevant in 

predicting the progression of OA as a function of diffusion.  

 

Problem Statement  
The goal of this project was to see if the group could create a mathematical model 

of the changes in diffusivity of gadolinium through patellar cartilage in both a healthy and 

diseased (osteoarthritic) state. The patella was chosen due to its relatively spherical 

architecture.  
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Analytical Solution 
We begin with the diffusion equation in three dimensional Cartesian coordinates. 

 

𝜕𝑈

𝜕𝑡
=  𝐷 (

𝜕2𝑈

𝜕𝑥2
+  

𝜕2𝑈

𝜕𝑦2
+  

𝜕2𝑈

𝜕𝑧2
) 

 

However, since we are modeling the patellar cartilage as a sphere, it makes more sense to 

work in spherical coordinates which we can do with the following coordinate 

transformation. 

𝑥 = 𝑟 𝑐𝑜𝑠(𝜃) sin(𝜙) 

𝑦 = 𝑟𝑠𝑖𝑛(𝜃)sin (𝜙) 

𝑧 = 𝑟 cos (𝜃) 

 

The diffusion equation in spherical coordinates: 

 

𝜕𝑈

𝜕𝑡
= 𝐷 (

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑈

𝜕𝑟
) +

1

𝑟2 sin2 𝜙
 
𝜕2𝑈

𝜕𝜃2
+  

1

𝑟2 sin2 𝜙
 (sin(𝜙)

𝜕𝑈

𝜕𝜙
))     

 

We assume diffusion only happens along the radial axis, and that the diffusion is 

symmetric with respect to 𝜃, 𝜙, which lets us simplify the equation. 

 

𝜕𝑈

𝜕𝑡
= 𝐷 (

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑈

𝜕𝑟
))  

Boundary Conditions: 

1. The concentration of Gadolinium must be finite at 𝑟 = 0 

2. The concentration of Gadolinium at the outside of the sphere, 𝑟 = 𝐿 is equal to the 

concentration of Gadolinium of the synovial fluid, a constant 𝑐0 

 

Initial Conditions: 
1. We assume that there is initially no Gadolinium in the patellar cartilage, 𝑈(𝑟, 0) =  0 

 

We can solve this using the “poison tooth” extraction method. Let us decompose the 

solution in a particular and a homogeneous solution: 

 

𝑐(𝑟, 𝑡) = 𝑐𝑝(𝑟, 𝑡) + 𝑐ℎ(𝑟, 𝑡) 

 

Let the particular solution be the steady state solution where 
𝜕𝑐

𝜕𝑡
 → 0 and 𝑐𝑝(𝑟) becomes a 

function of 𝑟 only. 

 

The PDE becomes an ODE in the particular solution: 
𝑑

𝑑𝑟
(𝑟2

𝑑𝑐𝑝

𝑑𝑟
) = 0 
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𝑟2
𝑑𝑐𝑝

𝑑𝑟
= 𝐶1 

𝑑𝑐𝑝 =
𝐶1

𝑟2
𝑑𝑟 

𝑐𝑝(𝑟) = 𝐶2 −
𝐶1

𝑟
 

 

Apply the boundary conditions: 

 

1. 𝐶𝑝 must remain bounded as 𝑟 → 0, thus 𝐶1 = 0 

2. Fixed concentration at the outer boundary, thus 𝑐𝑝(𝐿) = 𝐶2 = 𝐶0 

 

Our particular solution is simply the concentration of contrast agent at the boundary 

 

𝑐𝑝(𝑟) = 𝐶0 

 

Now we solve the homogeneous problem: 

 
1

𝐷

𝜕𝑐ℎ

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
 (𝑟2

𝜕𝑐ℎ

𝜕𝑟
) 

 

Homogeneous BCs:  
1. 𝑐ℎ remains bounded at 𝑟 = 0 

2. 𝑐ℎ(𝑅1, 𝑡) = 0 

 

We can use separation of variables: 

 

𝑐ℎ(𝑟, 𝑡) = 𝑅(𝑟)𝑇(𝑡) 

 

Substituting into the original equation: 

 
1

𝐷
𝑅(𝑟)𝑇′(𝑡) =

1

𝑟2

𝜕

𝜕𝑟
[𝑟2𝑅′(𝑟)𝑇(𝑡)]  

1

𝐷
𝑅(𝑟)𝑇′(𝑡) =

1

𝑟2
(2𝑟𝑅′(𝑟)𝑇(𝑡) + 𝑟2𝑅′′(𝑟)𝑇(𝑡)) 

1

𝐷
𝑅(𝑟)𝑇′(𝑡) =

2

𝑟
𝑅′(𝑟)𝑇(𝑡) + 𝑅′′(𝑟)𝑇(𝑡) 

𝑇′(𝑡)

𝐷𝑇(𝑡)
=

2
𝑟 𝑅′(𝑟) + 𝑅′′(𝑟)

𝑅(𝑟)
= −𝜆 

 

ODE in time: 
𝑑𝑇

𝑑𝑡
= −𝜆𝐷𝑇 
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ODE in space: 

𝑑2𝑅

𝑑𝑟2
+

2

𝑟

𝑑𝑅

𝑑𝑟
+ 𝜆𝑅 = 0 

 

Solution in time: 

 

𝑇(𝑡) = 𝐴𝑒−𝜆𝐷𝑡 
 

Now let’s solve the equation in space: 

 

𝑑2𝑅

𝑑𝑟2
+

2

𝑟

𝑑𝑅

𝑑𝑟
+ 𝜆𝑅 = 0 

Consider the case when 𝜆 = 0: 

𝑅(𝑟) =
𝐵1

𝑟
+ 𝐵2 

Boundary Conditions: 
1. 𝑅(0) is bounded at 𝑟 = 0    →     𝐵1 = 0 

2. 𝑅(𝐿) = 𝐵2 = 0    → 𝐵2 = 0 

 

Thus, the solution is trivial 

 

Consider the case when 𝜆 < 0. We will guess that 𝑅(𝑟) be of the form: 

𝑅(𝑟) =
𝑒𝑠𝑟

𝑟
 

 

Substituting into the original equation: 

 

2

𝑟3
𝑒𝑠𝑟 −

2𝑠

𝑟2
𝑒𝑠𝑟 +

𝑠2

𝑟
𝑒𝑠𝑟 +

2

𝑟
(−

1

𝑟2
𝑒𝑠𝑟 +

𝑠

𝑟
𝑒𝑠𝑟) +

𝜆𝑒𝑠𝑟

𝑟
= 0 

 

Canceling out terms: 

𝑠2

𝑟
𝑒𝑠𝑟 +

𝜆𝑒𝑠𝑟 

𝑟
= 0 

𝑠2 = −𝜆 

𝑠 =  ± √−𝜆  

 

General Solution in space: 

𝑅(𝑟) =
𝐵1𝑒

𝑟√−𝜆 

𝑟
+

𝐵2𝑒
−𝑟√−𝜆 

𝑟
 

 

Now let us consider the case where 𝜆 < 0: 

 

Apply our boundary conditions:  
1. At 𝑟 = 0:  

𝑅(𝑟) =
𝐵1 + 𝐵2

𝑟
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Thus, 𝐵1 = 𝐵2 = 0 and the solution is trivial 

 

Now let us consider the case when 𝜆 > 0: 
 

𝑅(𝑟) =
𝐵1𝑒

𝑖𝑟√𝜆 

𝑟
+

𝐵2𝑒
−𝑖𝑟√𝜆 

𝑟
 

𝑅(𝑟) =
𝐵1

𝑟
cos(√𝜆 𝑟) +

𝐵2

𝑟
sin(√𝜆 𝑟) 

 
1. In order for 𝑅(𝑟) to be bounded at zero, 𝐵1 must be zero because cos(0) = 1 

2. Applying the outer B.C. 𝑅(𝐿) = 0 

𝐵2

𝑟
sin(√𝜆 𝑟) = 0 

𝜆 = (
𝑛𝜋

𝐿
)

2

 

 

General solution: 

 

𝑐(𝑟, 𝑡) = 𝐶0 +  ∑
𝐴𝑛

𝑟
sin (

𝑛𝜋

𝐿
𝑟) 𝑒−𝐷(

𝑛𝜋
𝐿

)
2

𝑡
∞

𝑛=1
 

 

Solve for our initial condition: 

  

𝑐(𝑟, 0) = 0 

𝑐(𝑟, 0) =  𝐶0 +  ∑
𝐴𝑛

𝑟
sin (

𝑛𝜋

𝐿
𝑟) = 0

∞

𝑛=1
 

 

Multiply both sides by 𝑟2
sin(

𝑘𝜋

𝐿
𝑟) 

𝑟
 and integrate. The reason we use these new basis 

functions is because we are now working in spherical coordinates. 

 

∑ 𝐴𝑛 ∫ r2 ∗
1

r2
sin (

𝑛𝜋

𝐿
𝑟) sin (

𝑘𝜋

𝐿
𝑟)

𝑅1

0

𝑑𝑟 = −𝐶0 ∫ 𝑟 sin (
𝑘𝜋

𝐿
𝑟) 𝑑𝑟

𝑅1

0

∞

𝑛=1
 

 

Due to orthogonality, all terms on the left hand side of the equation drop out except when 

𝑛 = 𝑘.  

 

𝐴𝑘 = −
𝐶0𝐿

2
∫ 𝑟 sin (

𝑘𝜋

𝐿
𝑟) 𝑑𝑟

𝑅1

0

 

𝐴𝑘 =
2𝐶0𝐿 cos(𝜋𝑘)

𝜋𝑘
 

 

Final Analytical Solution: 

𝑐(𝑟, 𝑡) = 𝐶0 +  ∑
2𝐶0𝐿 cos(𝜋𝑘)

𝜋𝑘𝑟
 sin (

𝑛𝜋

𝐿
𝑟) 𝑒−𝐷(

𝑛𝜋
𝐿

)
2

𝑡
∞

𝑛=1
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Results  
Matlab was used along with the parameters in Table [1] to model the changes in 
diffusivity of Gadolinium through Patellar cartilage. 

 

 

Table 1 Parameters for Diffusion Model 

First, the analytical solution was verified by comparing it to the numerical pdep 
Matlab function. 

  

Figure 4: Analytical (left) and numerical (right) surface plot of the diffusion of Gadolinium through the 
patellar cartilage 

 

Since Figure 4 indicated that both solutions had a similar diffusion profile, the 
numerical model could now be used to compare changes in diffusivity of Gadolinium 
through Patellar cartilage in a healthy and diseased state. Additionally, to make the 
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model more realistic, the different diffusivities of the deep layer and superficial 
layers of the cartilage were incorporated into the solution. 

 

                           

                           

Figure 5: Computational Model of the diffusion of Gadolinium through Healthy (top) and Arthritic Patellar 
Cartilage (bottom). 

 

Figure 5 shows minute differences between the surface plots of the healthy and 
arthritic models. To get a closer look at the differences the diffusion at three different 
time points (2hours, 10 hours, and 24 hours) was plotted in Figure 6. Results of this 
graph indicated that at each time point diffusion was faster in the arthritic case. 
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Figure 6: Comparison of the Diffusion of Gadolinium through Patellar Cartilage in Healthy and Arthritic 
Tissue at 2hours, 10 hours and 24 hours. 

 

 

 

  

t = 2 hrs 

t = 10 hrs 

t = 24 hrs 
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Conclusion & Discussion 

The mathematical model showed that osteoarthritis affected the diffusivity of the 

Gadolinium in the patellar cartilage. When compared the analytical solution and the 

mathematical model both agree with each other. Both models showed the rate of diffusion 

increased due to osteoarthritis, which correlates with reality. Upon completion of our 

model our group was able to predict the time dependent concentration profile of 

Gadolinium in Healthy and Osteoarthritis affected cartilage 

Moving forward there are many things that could be taken into account to improve 

our model.  The greatest of these is the geometry of the patellar cartilage; it is important to 

note that the patellar cartilage is not a sphere and includes a region of bone in its center. 

Our model simplifies the geometry and ignores the bone portion of the patella, as it isn’t 

of interest in our problem. However, taking into account the unique geometry of the 

patella would allow the model to better model patient specific diffusion of Gadolinium. 

In the real world, doctors that want to look at a specific layer of cartilage in there 

patient could use our model.  It allow them to predict how much time is necessary for the 

Gadolinium to diffuse into the layer of interest. This would be useful in monitoring the 

progression of osteoarthritis in a very useful way. For example, if our model predicts that 

Gadolinium should diffusion to a certain depth of the cartilage in a set amount of time. Yet 

it diffuses deeper than expected with the allotted time, then this will let the Doctor know 

that the cartilage has degraded faster than anticipated. This would be huge in preventative 

medicine, as it will allow doctors to monitor the progression of osteoarthritis in there 

patient. Ideally the model will take into account the patient specific geometry of the 

patellar cartilage by taking a MRI scan of the patient and using the first geometry seen as a 

reference for subsequent MRIs. 
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MatLab Code 

Analytical Solution 
 

function analytical_solution_full_cartilage 
% Number of Terms 
ns = 20; 
  
% Diffusion constant 
global D 

D = 0.000178;  
  
% Concentration of gadolinium in the sinovial fluid 
global c0 
c0 = 6*10^-5; % Initial concentration of Ga  
  
% Radius of the patellar cartilage 

global L 
L = 5; % Outer radius is 5 mm 
  
% domain 
dx = 0.5; % step size in x dimension 
dt = 1000;  % step size in t dimension 
xmesh = 0:dx:5; % domain in x; L/2 = 1 

tmesh = 0:dt:(3600*24);  % domain in t (24 hours) 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
  
  
% solution on bounded domain using separation of variables 

sol_sep = zeros(nt, nx); 
sol_sep = sol_sep + c0; 
for n = 1:1:ns 
    k = n*pi/L; % R = 5 mm 
    for i = 1:length(tmesh) 
       for j = 1:length(xmesh) 
          sol_sep(i,j) = sol_sep(i,j) + 

2*c0*cos(n*pi)*L/(pi*n*xmesh(j)) * exp(-D*(k^2)*tmesh(i)) * 
sin(k*xmesh(j));  
       end 
    end 
end 
  

% Plot analytical solution 
figure(1) 
surf(tmesh,xmesh,sol_sep') 
title(['Separation of variables on bounded domain (first ', 
num2str(ns), ' terms in series)']) 
xlabel('t') 
ylabel('r') 

zlabel('C(r,t)') 
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PDEPE Full Cartilage 
 

function PDEPEFullCartilage 
%%%  

%%%  
  
% diffusion constant 
global D 
D = 0.000178;  
  
% domain 

dx = 0.1; % step size in x dimension 
dt = 1200;  % step size in t dimension 
xmesh = 0:dx:5; % domain in x 
tmesh = 0:dt:(3600*24);  % domain in t 
  
sol_pdepeOA = pdepe(2,@pdefunOA,@ic,@bc,xmesh,tmesh); 

sol_pdepeHE = pdepe(2,@pdefunHE,@ic,@bc,xmesh,tmesh); 
  
figure 
surf(tmesh,xmesh,sol_pdepeHE') 
% plot(xmesh,sol_pdepeOA(floor(2*3600/500),:)) 
% hold on 
% plot(xmesh,sol_pdepeHE(floor(2*3600/500),:),'r-.') 

% hold on 
% plot(xmesh,sol_pdepeOA(floor(10*3600/500),:)) 
% hold on 
% plot(xmesh,sol_pdepeOA(floor(20*3600/500),:)) 
% hold on 
% plot(xmesh,sol_pdepeHE(floor(10*3600/500),:),'r-.') 
% hold on 

% plot(xmesh,sol_pdepeHE(floor(20*3600/500),:),'r-.') 
title('Healthy Surface Plot (Computational)') 
xlabel('t') 
ylabel('r') 
zlabel('C(r,t)') 
axis([0 10*10^4 0 6 0 6*10^-5]) 

% legend('Osteoarthritis','Healthy'); 
  
% function definitions for pdepe: 
% ----------------------------------------------------------
---- 
  
function [c, f, s] = pdefunOA(xmesh, t, u, DuDx) 

% PDE coefficients functions 
a = 4.25; 
Df = zeros(length(xmesh)); 
for i = 1:length(xmesh) 
   if xmesh(i) >= a 
       Df(i) = 1.45*D; 

   elseif xmesh(i) <= a 
       Df(i) = 1.12*D; 
   end 
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end 
c = 1./Df; 
c = diag(c); 
f = DuDx; % diffusion 
s = 0; % homogeneous, no driving term 
end 

% ----------------------------------------------------------
---- 
  
function [c, f, s] = pdefunHE(xmesh, t, u, DuDx) 
% PDE coefficients functions 
a = 4.25; 

Df = zeros(length(xmesh)); 
for i = 1:length(xmesh) 
   if xmesh(i) >= a 
       Df(i) = 1.2*D; 
   elseif xmesh(i) <= a 
       Df(i) = 0.89*D; 
   end 

        
end 
c = 1./Df; 
c = diag(c); 
f = DuDx; % diffusion 
s = 0; % homogeneous, no driving term 

     
end 
  
function u0 = ic(xmesh) 
% Initial conditions function 
u0 = 0; 
end 

% ----------------------------------------------------------
---- 
  
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 
  
pl = ul; % zero value left boundary condition 

ql = 0;  % no flux left boundary condition 
pr = ur-(6*10^-5); % zero value right boundary condition 
qr = 0;  % no flux right boundary condition 
end 
  
end 

  
 

 


